電験3種過去問【2016年理論 問1】
2022年11月29日
【電磁気】二つの点電荷がつくる等電位面分布《計算問題》
真空中において、図のようにx軸上で距離3d[m]隔てた点A(2d,0)、点B(-d,0)にそれぞれ2Q[C]、-Q[C]の点電荷が置かれている。 xy平面上で電位が0Vとなる等電位線を表す図として、最も近いものを次の(1)~(5)のうちから一つ選べ。
解答
(4)
解説
真空中に置かれた点電荷Q[C]が、r[m]はなれた点につくる電位V[V]は、真空の誘電率を\(\epsilon_0\)とすると
\(\displaystyle V=\frac{Q}{4\pi\epsilon_0}\frac{1}{r}\) [V]
で与えられる。
いま、点Aに置かれた電荷2Q[C]がつくる電位VA[V]はxy平面上に、次式で与えられる。
\(\displaystyle V_A=\frac{2Q}{4\pi\epsilon_0}\frac{1}{\sqrt{(x-2d)^2+y^2}}\) [V]
また、点Bに置かれた電荷-Q[C]がつくる電位VB[V]はxy平面上に、次式で与えられる。
\(\displaystyle V_B=\frac{-Q}{4\pi\epsilon_0}\frac{1}{\sqrt{(x+d)^2+y^2}}\) [V]
題意より、VA+VB=0となる条件は、
\(\displaystyle \frac{2Q}{4\pi\epsilon_0}\frac{1}{\sqrt{(x-2d)^2+y^2}}-\frac{Q}{4\pi\epsilon_0}\frac{1}{\sqrt{(x+d)^2+y^2}}=0\)
\(\displaystyle \frac{2Q}{4\pi\epsilon_0}\frac{1}{\sqrt{(x-2d)^2+y^2}}=\frac{Q}{4\pi\epsilon_0}\frac{1}{\sqrt{(x+d)^2+y^2}}\)
\(\displaystyle \frac{2}{\sqrt{(x-2d)^2+y^2}}=\frac{1}{\sqrt{(x+d)^2+y^2}}\)
\(\displaystyle \frac{4}{(x-2d)^2+y^2}=\frac{1}{(x+d)^2+y^2}\)
\(\displaystyle 4(x+d)^2+4y^2=(x-2d)^2+y^2\)
\(\displaystyle 4x^2+8dx+4d^2+4y^2=x^2-4dx+4d^2+y^2\)
\(\displaystyle 3x^2+12dx+3y^2=0\)
\(\displaystyle x^2+4dx+y^2=0\)
\(\displaystyle (x+2d)^2-4d^2+y^2=0\)
\(\displaystyle (x+2d)^2+y^2=(2d)^2\)
つまり、中心が(-2d,0)で半径が2dの円グラフとなる。(4)が正しい。
関連記事
電験3種過去問【2018年理論 問3】
【電磁気】点磁荷がつくる磁界の強さ《計算問題》 長さ2mの直線状の棒磁石があり ...
電験3種過去問【2013年理論 問2】
【電磁気】複数の点電荷に働く力《計算問題》 図のように、真空中の直線上に間隔r ...
電験3種過去問【2019年電力 問15】
【火力発電】火力発電所のタービン出力と復水器冷却水温度の計算《計算問題》 復水 ...
電験3種過去問【2021年機械 問1】
【直流電動機】分巻・直巻直流電動機の特徴《空所問題》 次の文章は、直流電動機に ...
電験3種過去問【2013年電力 問1】
【水力発電】水力発電に用いる水車《空所問題》 次の文章は、水力発電に用いる水車 ...
ディスカッション
コメント一覧
まだ、コメントがありません