電験3種過去問【2016年理論 問1】
2022年11月29日
【電磁気】二つの点電荷がつくる等電位面分布《計算問題》
真空中において、図のようにx軸上で距離3d[m]隔てた点A(2d,0)、点B(-d,0)にそれぞれ2Q[C]、-Q[C]の点電荷が置かれている。 xy平面上で電位が0Vとなる等電位線を表す図として、最も近いものを次の(1)~(5)のうちから一つ選べ。
解答
(4)
解説
真空中に置かれた点電荷Q[C]が、r[m]はなれた点につくる電位V[V]は、真空の誘電率を\(\epsilon_0\)とすると
\(\displaystyle V=\frac{Q}{4\pi\epsilon_0}\frac{1}{r}\) [V]
で与えられる。
いま、点Aに置かれた電荷2Q[C]がつくる電位VA[V]はxy平面上に、次式で与えられる。
\(\displaystyle V_A=\frac{2Q}{4\pi\epsilon_0}\frac{1}{\sqrt{(x-2d)^2+y^2}}\) [V]
また、点Bに置かれた電荷-Q[C]がつくる電位VB[V]はxy平面上に、次式で与えられる。
\(\displaystyle V_B=\frac{-Q}{4\pi\epsilon_0}\frac{1}{\sqrt{(x+d)^2+y^2}}\) [V]
題意より、VA+VB=0となる条件は、
\(\displaystyle \frac{2Q}{4\pi\epsilon_0}\frac{1}{\sqrt{(x-2d)^2+y^2}}-\frac{Q}{4\pi\epsilon_0}\frac{1}{\sqrt{(x+d)^2+y^2}}=0\)
\(\displaystyle \frac{2Q}{4\pi\epsilon_0}\frac{1}{\sqrt{(x-2d)^2+y^2}}=\frac{Q}{4\pi\epsilon_0}\frac{1}{\sqrt{(x+d)^2+y^2}}\)
\(\displaystyle \frac{2}{\sqrt{(x-2d)^2+y^2}}=\frac{1}{\sqrt{(x+d)^2+y^2}}\)
\(\displaystyle \frac{4}{(x-2d)^2+y^2}=\frac{1}{(x+d)^2+y^2}\)
\(\displaystyle 4(x+d)^2+4y^2=(x-2d)^2+y^2\)
\(\displaystyle 4x^2+8dx+4d^2+4y^2=x^2-4dx+4d^2+y^2\)
\(\displaystyle 3x^2+12dx+3y^2=0\)
\(\displaystyle x^2+4dx+y^2=0\)
\(\displaystyle (x+2d)^2-4d^2+y^2=0\)
\(\displaystyle (x+2d)^2+y^2=(2d)^2\)
つまり、中心が(-2d,0)で半径が2dの円グラフとなる。(4)が正しい。
関連記事
電験3種過去問【2022年(上期)電力 問8】
【送電】送電線路での抵抗による全電力損失《計算問題》 受電端電圧が20kV の ...
電験3種過去問【2013年機械 問6】
【同期機】三相同期発電機の同期インピーダンスの値《計算問題》 定格電圧 6.6 ...
電験2種過去問【2021年電力 問3】
【発電機一般】電力系統安定化装置(PSS)に関する記述《空所問題》 次の文章は ...
電験2種過去問【2018年法規 問6】
【電気施設管理】配電系統の電圧管理《空所問題》 次の文章は、配電系統の電圧管理 ...
電験3種過去問【2022年(下期)機械 問2】
【誘導機】三相誘導電動機の軸出力《計算問題》 三相誘導電動機が滑り 2.5%で ...
ディスカッション
コメント一覧
まだ、コメントがありません